

Atomic Data Needs for Astrophysics

Iron Project Meeting, 23-24 June, 2005 Queen's University Belfast

Contributions:

H.E. Mason

G. Del Zanna

E. Landi

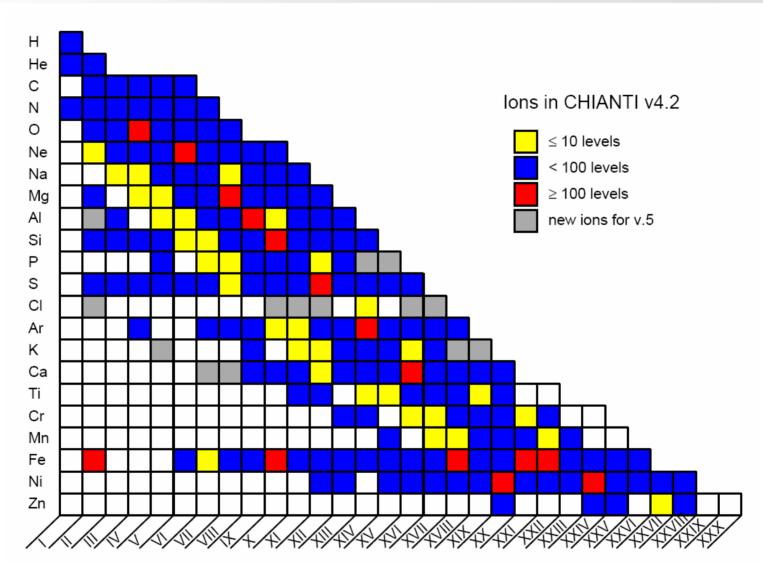
K. Dere

M. Landini

Dr Peter Young p.r.young@rl.ac.uk

Overview

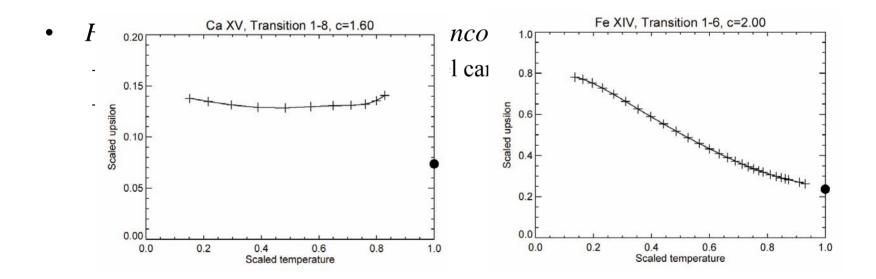
- Status of CHIANTI & data needs
- Upcoming solar missions & data needs
 - Solar-B
 - SDO
- CHIANTI projects for assessing and calculating atomic data
 - n=3 transitions at UV wavelengths
 - FAC calculations for X-ray wavelengths
 - benchmarking of iron data
- Specific data problems
 - neutrals
 - Fe XVII
- Recombination & ionization



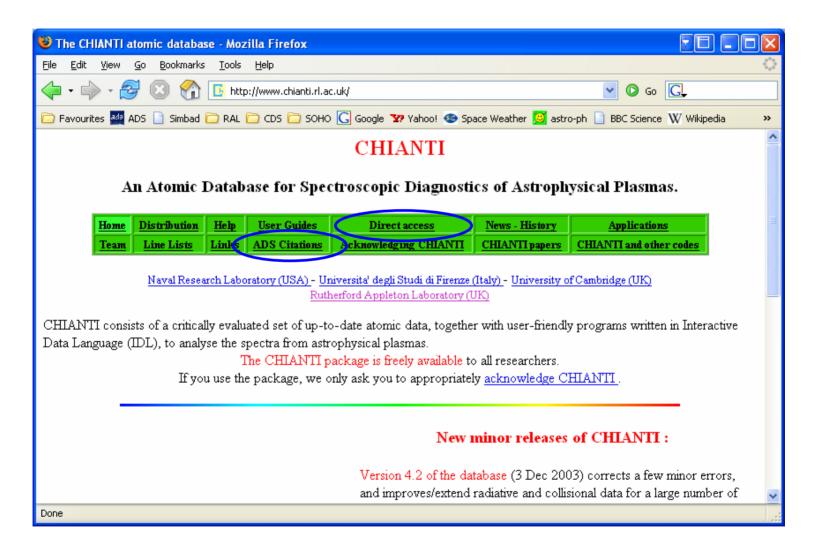
CHIANTI v.5

- Version 5 of CHIANTI will be released this summer
- Major improvements for iron at X-ray wavelengths
 - high-n levels for Fe XVII XXIII
 - contribution of ionization/recombination to level balance
 - revised wavelengths
- Addition/improvements to existing ions
 - Fe VII, Fe IX, Fe X, Fe XII, Fe XXIII from IP
 - n=3 levels for C, N, O sequences
- New ions
 - Al II, Cl II, Cl X-XII, Cl XVI-XVII, P XIV-XV, Ca VII-VIII, K V, K XVIII-XIX

CHIANTI ion models


New data required

- Missing ions
 - low ionizations stages of S, Ar and Ca
 - neutrals
 - Mg III, Al IV (Ne-like)
- New data required
 - O-like ions (mainly n=2 models at present)
 - F-like ions (mainly 3 level models at present)


Oscillator strengths

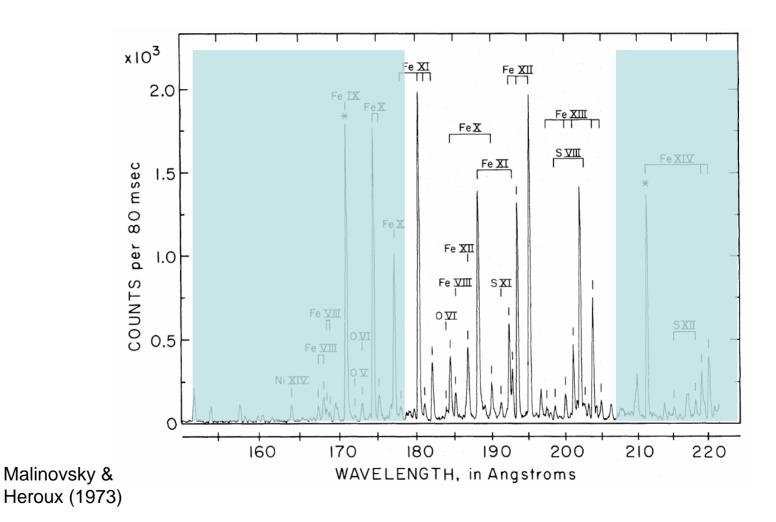
- Intermediate Coupling oscillator strengths from collisional calculations are extremely valuable
- High energy/temperature limit points
 - very useful for checking allowed transitions

CHIANTI webpage

Solar-B

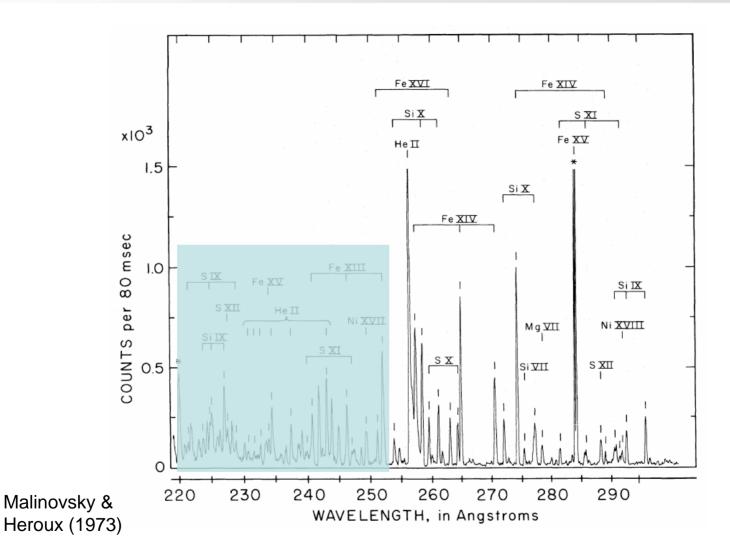
- Japan/US/UK/Norway mission
 - successor to Yokkoh
 - to be launched 2006
- 3 scientific instruments
 - EUV spectrometer [led by UK]
 - broad-band X-ray imager
 - optical telescope

SOLAR-B



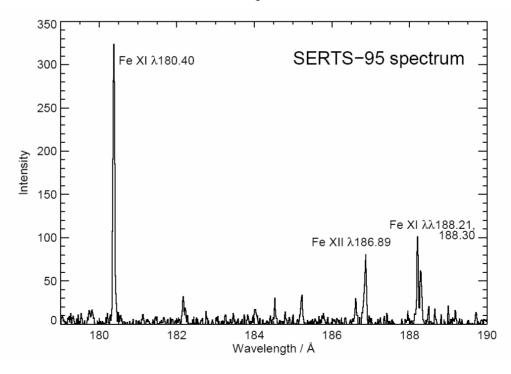
Solar-B / EIS

- High resolution spectra in two wavelength ranges
 - 170-210 Å
 - 250-290 Å
- Dominated by iron ions
 - Fe VIII, X-XVI, XXIII, XXIV
- Key density diagnostics
 - Fe XIII 203.8/202.0
 - Fe XII 186.9/195.1
 - Fe XIV 264.8/274.2



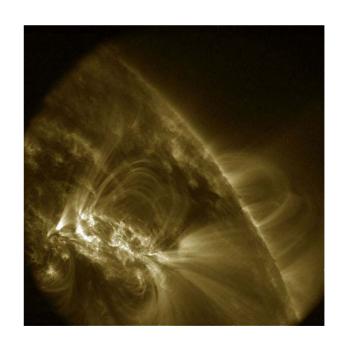
EIS: 170-210 Å band

EIS: 250-290 Å band

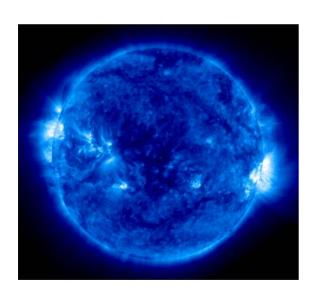

EIS data needs

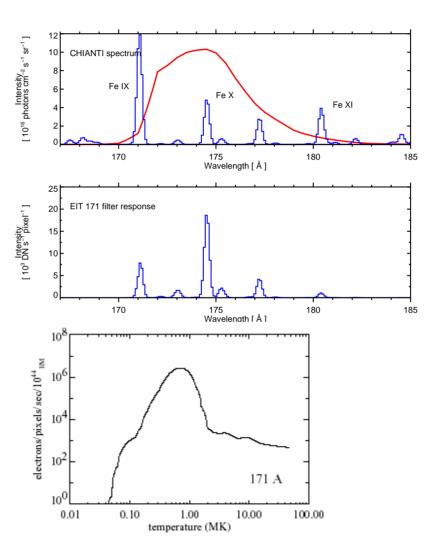
- Iron ions: Fe XI, Fe XIII
 - no IP data available yet
- Cool ions: Mg V, Mg VII, Si VII
 - R-matrix for O-like ground configuration, but only to 10⁵ K
 - no R-matrix data for Mg VII
- Ca XVII
 - flare line 192.82 (log T=6.7)
 - old R-matrix data from Dufton et al. (1983)
- Ni XVI
 - $-\lambda 191.40/\lambda 194.40$ is a good density diagnostic for flare plasma (logT=6.5)
 - DW data from Bhatia & Doschek (1999)

Fe XI problems


- Only 12 of 28 levels in 3s²3p³3d have observed energies
- Identification for one of strongest lines (λ 188.30) is uncertain
 - Bhatia & Doschek (1996) data suggest ¹P₁ upper level
 - Aggarwal & Keenan (2003) data suggest ³S₁

Solar Dynamics Observatory


- SDO
 - NASA mission
 - UK providing cameras (RAL) and data-processing algorithms (e-SDO project)
 - to be launched 2008
- High data rate will lead to ≈ 8 hi-res images every 10 seconds
- 3 instruments
 - AIA: UV/EUV imaging
 - *HMI*: visible, magnetograms
 - EVE: UV irradiance
- No spectroscopy!



SDO imager

 Multilayer technology allows narrow band imaging in EUV

SDO – AIA instrument

• AIA filters:

Ion	Wavelength / Å	Log (T/K)
Fe IX / X	171	5.9
Fe XII / XXIV	195	6.1, 7.3
Fe XIV	211	6.3
Fe XVI	335	6.4
Fe XVIII	94	6.8
Fe XX / XXIII	131	7.0, 7.2

• Iron very important!

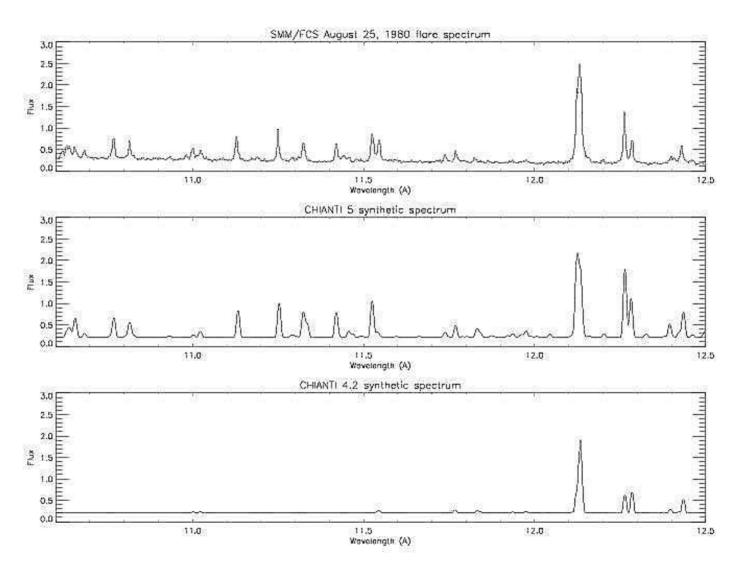
CHIANTI projects

- The CHIANTI team are actively involved in assessing and developing new atomic data
- E. Landi working with A. Bhatia to provide DW data where no other data available
- E.Landi working with M.F. Gu to calculate high-n iron line data
- G. Del Zanna, H. Mason, P. Young working with IP and RmaX groups

n=3 for C, N, O sequences

- A large number of n=3 to n=3 transitions are found in the UV, and have been seen by the SUMER instrument on SOHO
- Distorted wave data have been calculated for many ions by Bhatia & Landi
- C sequence
 - SXI
- N sequence
 - Mg VI, S X, Ar XII, Ca XIV
- O sequence
 - Ne III, Mg V, Si VII, S IX, Ar XI, Ca XIII

$(\mathring{\mathbf{A}})$	Transition	Intensity	Comments
713.86	(2D)3s 1D2-(2P)3p 1D2	0.48	BL: Ar viii
868.13	$(^{2}D)3s^{3}D_{3}-(^{2}P)3p^{3}P_{2}$	0.252	BL: Mg vii
902.24	$(^4S)3p ^5P_1 - (^4S)3d ^5D_2$	0.023	
904.88	$(^4S)3p ^5P_2 - (^4S)3d ^5D_{2,3}$	0.078	
906.99	$(^4S)3p ^5P_1 - (^4S)3d ^3F_4$	0.015	
909.43	$(^4S)^3p ^5P_3 - (^4S)^3d ^5D_{3,4}$	0.078	
915.10	$(^{2}D)3p^{3}F_{3}-(^{2}D)3d^{3}G_{4}$	0.038	
918.71	$(^{2}D)3p^{3}F_{4}-(^{2}D)3d^{3}G_{5}$	0.055	
963.94	$(^{2}D)3p^{3}F_{4}-(^{2}D)3d^{3}F_{4}$	0.0055	BL: Fe III, N I
967.19	$(^{2}D)3p^{3}F_{2}-(^{2}D)3d^{3}F_{3}$	0.012	BL: Fe III
968.42	$(^{2}D)3p^{3}F_{2}-(^{2}D)3d^{3}F_{2}$	0.025	
	$(^{2}P)^{3}s^{1}P_{1}-(^{2}P)^{3}p^{1}D_{2}$		
1005.54	$(^{2}P)3s^{3}P_{1}-(^{2}P)3p^{3}P_{2}$	0.029	BL: Ne vi
1006.24	$(^{2}P)3s^{3}P_{2}-(^{2}P)3p^{3}P_{1}$	0.025	
1009.91	$(^{2}P)3s^{3}P_{2}-(^{2}P)3p^{3}P_{2}$	0.098	
1132.80	$(^{2}P)3s^{3}D_{3}-(^{2}P)3p^{3}F_{2}$	0.125	
1135.39	$(^4S)3s ^5S_2 - (^4S)3p ^3P_3$	0.53	
1137.24	$(^{2}D)3s^{3}D_{2}-(^{2}D)3p^{3}F_{3}$	0.081	
1141.68	$(^{2}D)3s^{3}D_{1}-(^{2}D)3p^{3}F_{2}$	0.014	
1142.46	$(^4S)3s ^5S_2 - (^4S)3p ^5P_2$	0.25	
1143.55	$(^{2}P)3s^{3}P_{2}-(^{2}P)3p^{3}D_{3}$	0.15	
1146.54	$(^4S)3s ^5S_2 - (^4S)3p ^5P_1$	0.079	
1167.72	$(^4S)3s ^3S_1 - (^4S)3p ^3P_2$	0.086	
1169.30	$(^4S)3s \ ^3S_2 - (^4S)3p \ ^3P_1$	0.046	
1199.52	$(^{2}P)3s^{1}P_{1}-(^{2}P)3p^{1}P_{1}$	0.14	BL: N I
1232.55	$(^{2}D)3s^{3}D_{2}-(^{2}D)3p^{3}D_{2}$	0.35	
1236.00	$(^{2}D)3s^{1}D_{1}-(^{2}D)3p^{1}F_{3}$	0.061	
1049.27	$2s^22p^{4} {}^{3}P_{1} - 2s^22p^{4} {}^{1}S_{0}$	0.215	

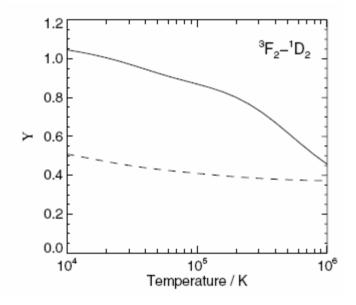


FAC calculations

- Ming-Feng Gu developed the Flexible Atomic Code (FAC) based on HULLAC code
- Suitable for calculating collision data for high-n (n=3,4,5) for which no other data are available
- v.5 of CHIANTI will contain FAC data for
 - Fe XVII [n=3,4,5,6,7]
 - Fe XVIII XXIII [n=3,4,5]
- Resonances are included for transitions involving n=2 and n=3 using the *isolated resonance approximation*

Example of new FAC data

Benchmarking Fe data


- CHIANTI team are playing a key role in assessing quality of atomic data for iron ions
- Recent work

Fe VII	A-values, Upsilons	Young et al. (2005)
Fe X	Energies, A-values, Upsilons	Del Zanna et al. (2004)
Fe XII	Energies, A-values, Upsilons	Del Zanna & Mason (2005)
Fe XIII	A-values	Young (2004)
Fe XXIII	Energies, A-values, Upsilons	Del Zanna et al. (2005)

Fe VII

Young, Berrington & Lobel
(2005, A&A, 432, 665)

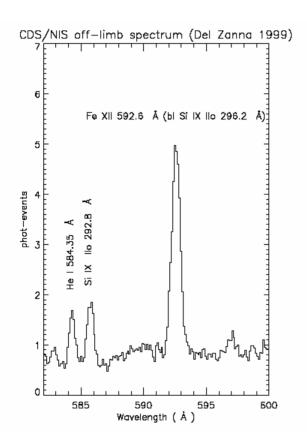
Upper			E(I	B - V)
level	Ratio	Observed	0.00	0.10
¹ S ₀	$\lambda 2143^a/\lambda 2016$	0.288 ± 0.054	0.242	0.224 ⊲
	$\lambda 2183/\lambda 2016$	0.036 ± 0.007	0.038	0.036
$^{1}G_{4}$	λ3587/λ3759	0.663 ± 0.047	0.715	0.704
$^{3}P_{2}$	λ4699/λ4943	0.247 ± 0.017	0.226	0.221 ⊲
	$\lambda 5277^b/\lambda 4943$	0.609 ± 0.045	0.988	1.017 ◀
$^{3}P_{1}$	$\lambda 4894/\lambda 5160^{c}$	0.553 ± 0.039	0.695	0.678 ⊲
$^{1}\mathrm{D}_{2}$	$\lambda 5722/\lambda 6088^d$	0.623 ± 0.044	0.656	0.642

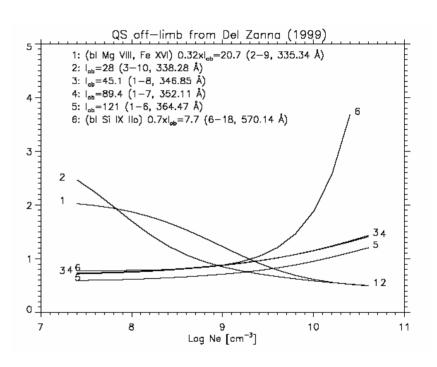
^a Flux corrected for blend with N II λ2143.452.

Table 4. Comparison of observed line ratios with those derived from the fitting procedure. The ratios are formed by summing lines from a common upper level, and comparing with the summed lines from the ${}^{1}D_{2}$ level.

Upper	Ratio		
level	Observed	Fitted	
$^{3}P_{0}$	0.043 ± 0.003	0.039	
$^{3}P_{1}$	0.042 ± 0.003	0.042	
$^{3}P_{2}$	0.170 ± 0.008	0.183	
$^{1}G_{4}$	1.003 ± 0.051	1.016	
$^{1}S_{0}$	0.064 ± 0.005	0.063	

^b Flux corrected for blend with Fe II λ5277.480.


^c Blended with Fe II λ5160.214 (not corrected).

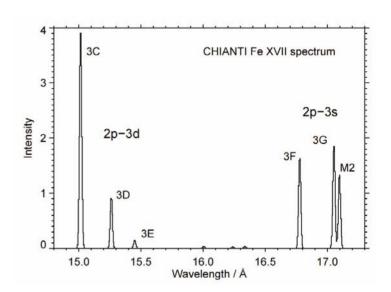

d Flux corrected for blend with Ca V λ6088.058.

Fe XII

• Del Zanna & Mason (2005, A&A, 433, 731)

Neutrals

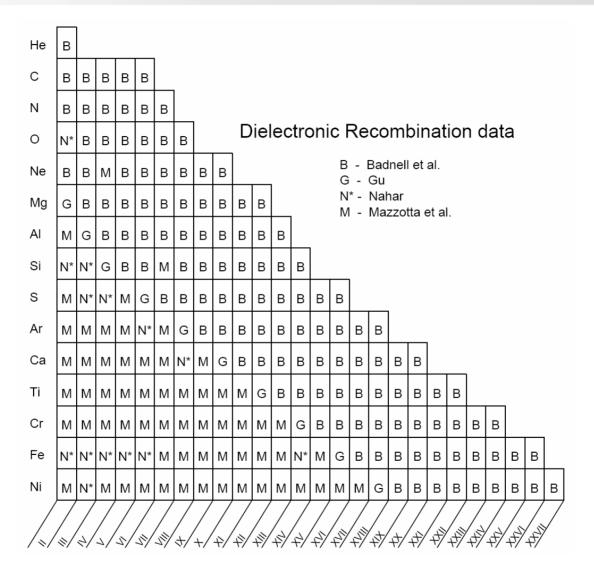
- Only neutrals currently in CHIANTI are H, He and N
- Data for sulphur and oxygen have been calculated by Tayal and collaborators, but only in LS-coupling
- IC data for following neutrals are needed
 - C I
 - O I
 - Ne I
 - Mg I
 - Si I
 - SI



Fe XVII

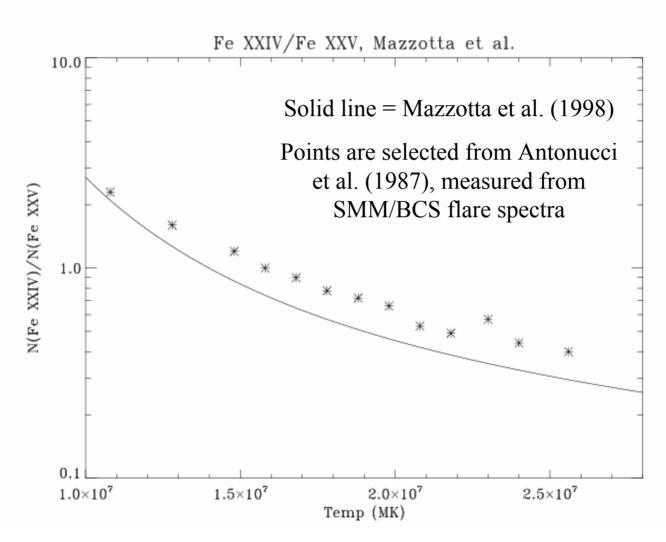
- Two key problems
- 1. observed (lab+astro) 3C/3D is less than theory prediction
- 2. observed 2p-3s/2p-3d ratios higher than theory

- recombination + cascading
- resonances



Recombination & Ionization

- Ion balance calculations are generally recognised as the biggest source of uncertainty when interpreting spectra
- Updates to the ion fractions presented in Mazzotta et al. (1998) are urgently required
- A future version of CHIANTI (v6, v7?) will provide assessed ionization and recombination rates
- CHIANTI ion balance will be updated regularly



DR rates

Ion balance problems

Summary

- The Iron Project have done an excellent job in updating key iron ions
 - Fe IX, Fe X, Fe XII, Fe XIV
- New data for Fe XI, Fe XIII, Fe XVII are eagerly awaited
- Iron extremely important for future solar missions: Solar-B, SDO
- M-shell ion calculations for other elements also important (S, Ar, Ca)
- Some key L-shell ions need R-matrix calculations (Mg VII, O-like, F-like)
- Electron excitation calcs in good shape
 - ...but calcs for ionization & recombination urgently needed