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What is RAL?

• Houses large facilities (ISIS, CLF) and departments including Space 
Science & Technology

• Solar Physics group has played a hardware role in most solar space 
missions since the 70’s

• PI institute for CDS on SOHO satellite
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Overview

• Introduction to Sun
• Ultraviolet radiation
• Types of solar data
• Diagnostics: imaging instruments
• Diagnostics: spectroscopic instruments
• Future satellites
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The Solar Corona

• Recent satellites have revolutionized our view of Sun’s corona
– Yohkoh, 1991-2001
– SOHO, 1995-
– TRACE, 1998-
– RHESSI, 2002-
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The Dynamic Corona

SOHO/EIT
195 filter
1.5 million K
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Corona & Magnetic Fields

SOHO/MDI SOHO/EIT
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Solar Cycle
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The Transition Region

• Small layer between chromosphere and corona (20,000 – 1 million K)

Transition region (SOHO/SUMER) Corona (SOHO/EIT)
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Coronal Loops

• The basic “building block” of the solar atmosphere

Coronal loops, 1 million K
(TRACE)

Transition region loops, 300,000 K
(SOHO/CDS)
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Flares

Large X17 flare, 28 Oct 2003
SOHO/EIT, 195 filter
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Coronal Mass Ejection

SOHO/LASCO
C2 coronagraph
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Why go into Space?

• Perfect ‘seeing’ conditions
• Access to new wavelength regions
• Observe Sun continuously for long periods

• See Sun from different angles
• Get closer to the Sun
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Solar Visible Spectrum

• Shows continuum (≈ blackbody 5800 K) and absorption lines
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Solar Ultraviolet Spectrum

• In the UV, continuum emission disappears and spectrum dominated by 
emission lines

• The ‘quiet’ solar atmosphere emits most radiation at UV wavelengths
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Ultraviolet Radiation

• Extends from 10 to 380 nm
• 99 % of UV that reaches Earth’s surface is > 315 nm (UV-A)
• UV-B radiation (200-315 nm) is absorbed by oxygen molecules to produce 

ozone
• Variation of extreme UV radiation modifies size of the Earth’s ionosphere

• UV radiation below 200 nm provides excellent diagnostic possibilities for 
the Sun’s transition region and corona (T > 20,000 K)
– requires satellite-based instrumentation
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Atomic Structure Basics

• Quantum physics leads to electrons 
orbiting the nucleus lying in discrete 
orbitals

• Energy levels can be labelled by 
integers, Ei

• Lowest level is ground level
• Higher levels become squashed 

together, merging into ionization 
limit

ionization
limit

ground
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Level structure
H O+5 Fe+

• Hydrogen has simple structure (Rydberg
level series)

• Li-like O+5 has 3 electrons, yet series 
remains simple

• Large ions such as Fe+ have very 
complex level structure
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Atomic Transitions

• Emission lines arise from transitions 
between ion levels

• Photon energy = Ej – Ei

j

i

hv=∆E
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Hydrogen Spectrum
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UV history

• UV instrumentation has been flown on many solar satellites
– Orbiting Solar Observatories (OSO), 1962-78
– Skylab, 1973-74
– Solar Maximum Mission (SMM), 1980-89
– SOHO, 1995-
– TRACE, 1998-
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UV History

• Also a key observation range for astronomy satellites
– Copernicus, 1972-1981
– IUE, 1978-1996
– Hubble Space Telescope, 1991-
– Extreme Ultraviolet Explorer (EUVE), 1992-2001
– Far Ultraviolet Spectroscopic Explorer (FUSE), 1999-
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Remote Sensing of the Sun

• Information only derived from solar radiation
• 4 ‘dimensions’: t, x, y, λ
• Detectors are 2-dimensional, time obtained by repeated exposures
• Something has to go! 

– x, y or λ
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Remote sensing of the Sun

• Two approaches

• Filtergrams
– Filter out a small portion of the spectrum, and take X-Y images

• Spectroscopy
– Throw out one of the spatial dimensions to obtain wavelength 

resolution
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Filtergram Example: SOHO/EIT

• EIT Fe IX/X 173 filter lets through only radiation around 173 Å
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Filtergram Example: SOHO/EIT

• Radiation corresponds to ≈ 1 million K (EIT Fe IX/X 173 filter)
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Spectroscopy Example: CDS

• 2D images are built up by repeated exposures at neighbouring positions

wavelength

y

2D images are built up 
strip-by-strip – a process 

called ‘rastering’

x
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CDS Images
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Imaging vs. Spectroscopy

Advantages Disadvantages

Filtergrams
(Imaging)

High time cadence; easy to 
analyse

Ambiguous interpretations

Spectroscopy Detailed plasma information: 
temperature, density, emission 
measure, abundances, 
velocities

Rasters can be slow; difficult 
to analyse; useful lines often 
weak
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Satellite Restrictions

• Two basic features of satellites can lead to restrictions on data quality

• Telemetry
– the rate at which data can be sent to Earth

• Satellite orbit
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Telemetry

• E.g., SOHO has a standard telemetry rate of 40 kilobits/s divided amongst 
12 scientific instruments

• For EIT this means typically 4 images/hour

• A single CDS spectra takes 10 mins. A full raster takes 12 hours!
– necessary to select spectral windows
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Satellite Orbits

• A standard low Earth orbit means the Earth blocks view of the Sun
– continuous tracking of features not possible
– singular events such as flares can be missed

• Solution for SOHO was to fly to L1 Lagrange point
• Uninterrupted view of the Sun
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Satellite Orbits

• Two useful Earth orbits for observing the Sun
• Geosynchronous

– 5.5 Earth radii above surface; good visibility of Sun
– Allows dedicated ground station

• Sun-synchronous
– Polar orbit, allows 24 hour coverage of Sun
– Passes over same point on surface each day
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Diagnostics of the Corona

• Examples will be presented from imaging and spectroscopic instruments

• Imaging
– TRACE
– SOHO/EIT

• Spectroscopy
– CDS
– SUMER
– UVCS
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Imaging Instruments

• Filters on EIT and TRACE provide a temperature slice through the solar 
atmosphere

Fe XII 195
1.5 million K

Fe IX/X 171
1 million K

He II 304
20,000 K

Fe XV 284
2 million K
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TRACE

• TRACE has 0.5 arcsec pixels compared to 2.5 arcsec for EIT
• Highest resolution images of corona
• Sees a sub-region of the Sun
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UV spectrum

Malinovsky & Heroux (1973)
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Ionization balance

• Collisions with electrons can remove or add electrons to an ion

• Remove electrons (ionization)
– direct
– excitation-autoionization

• Add electrons (recombination)
– radiative
– dielectronic

• In the corona only 1-electron recombination and ionization is relevant
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Ionization Balance

recombinationionization
Stage

i-1
Stage

i
Stage
i+1ionizationrecombination

• Solving for all ionization stages, i, gives ionization fraction

• Tables of updated ionization fractions are published every few years
– Mazzotta et al. (1998, A&A)
– Arnaud & Raymond (1992, ApJS)
– Arnaud & Rothenflug (1985, A&AS)

∑
=

j

j

i

i N
NTF )(
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Fe XII Ion Fraction
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Oscillating Coronal Loops 

• Aschwanden et al. (2000) found, from TRACE data, a set of coronal loops 
that oscillated following a flare

• Coronal loop oscillation
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Coronal Magnetic Field

• Very difficult to measure, yet key parameter in coronal heating models

• Nakariakov & Ofman (2001, A&A) used oscillating loops to derive coronal 
magnetic field of 13 ± 9 Gauss
– oscillation is a global standing kink wave 
– field strength related to oscillation period, loop length and loop density
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Temperature Diagnostic

• Taking ratios of filter images leads 
to temperature estimates

• At coronal temperatures, TRACE 
171/195 ratio directly related to 
temperature

Lenz et al. (1999, ApJ)
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Coronal Loop Heating

• Lenz et al. used the TRACE 
195/171 ratio to show that coronal 
loops are close to isothermal

• Requires loop heating at footpoints
in hydrostatic models 
(Aschwanden 2000, ApJ)

• Location of coronal heating 
determined!
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‘Purity’ of EIT & TRACE Bands

• In most cases the EIT and TRACE 
195 band is dominated by Fe XII 
emission implying temperatures of 
≈ 1.5 million K

• At temperatures < 1 million K, 
there is no Fe XII emission and Fe 
VIII dominates the 195 band (Del 
Zanna & Mason 2003)
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TRACE: Fe XII & Fe XXIV

• At flare temperatures (~10 million K) a strong Fe XXIV appears in 
TRACE 195 band



Dr Peter Young, CCLRC/RALAnalysis Techniques for Turbulent Plasmas, 2004

SOHO Spectrometers

• Coronal Diagnostic Spectrometer (CDS)
• Solar Ultraviolet Measurements of Emitted Radiation (SUMER)
• Ultraviolet Coronagraph Spectrometer (UVCS)

• CDS and SUMER look on-disk and cover 150-1600 Å
• UVCS is an off-limb instrument covering 
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Spectroscopy

• Emission line diagnostics come in two types

• Study of shape and position of emission lines
– yields plasma velocity, broadening parameters

• Study of emission line strengths
– yields temperatures, densities, abundances, emission measure
– requires detailed atomic data
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Doppler shifts

• Each emission line has a standard position (the rest wavelength)
• Shifts from this position imply motion of the plasma

– blueshifts: towards the observer
– redshifts: away from the observer

Blueshift Redshift
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Acceleration of the Solar Wind

• Hassler et al. (1999, Science) 
measured velocity shifts in a coronal 
hole with SUMER

• Found small blueshifts implying 
upflow of plasma at velocities 5-20 
km/s

• The source of the solar wind!
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Line Width Diagnostics

• The width of emission lines can be written in velocity units as 

• The components of ∆v are written as

• where 
– ∆vI is the instrumental width
– 2kT/M is the thermal width
– ξ is the non-thermal velocity

c
v∆

=
∆
λ
λ

22
I

2 2 ξ++∆=∆
M
kTvv
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Non-thermal Velocities

• Peak ξ2 values are found at ≈ 3 x 105 K
• Several theories for excess broadening

– supposition of flows in many different structures
– Alfvén waves
– turbulence
– nanoflare heating

Chae et al. (1998, ApJ)
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Explosive Events

• Emission line profiles are usually Gaussian
• Explosive events in the transition region (~ 105 K) show strongly non-

Gaussian profiles

• Sudden release of energy related to magnetic field

Dere et al. 1989, Sol. Phys.
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Bi-directional Jets

Innes et al. (1997, Nature)
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Magnetic Reconnection

• Evidence of magnetic reconnection
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Line Ratio Diagnostics

• To correctly model emission line strengths in corona and transition region 
requires detailed atomic data

• Plasma is not in thermal equilibrium, so level balance equations have to be 
explicitly solved
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Emissivities

• An emission line arises from the decay of some level j to a lower level i 
(often the ground level)

• Emitted photon has energy ∆E = Ej – Ei

• Strength of emission line determined by emissivity

• Nj population of level j
• Aji radiative decay rate

– measure of strength of transition

jijij AN=ε

j

hv= ∆E 

i
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Key Approximation 1

• Coronal plasma is optically thin
– once emitted, photons are not re-absorbed
– theoretical line emissivity directly related to observed line intensity
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Key Approximation 2

• Ionization balance separate from level balance

Charge=Z

Charge=Z-1 Charge=Z+1

Rate at which ionizations/recombinations
occur << rate at which excitations/decays
occur



Dr Peter Young, CCLRC/RALAnalysis Techniques for Turbulent Plasmas, 2004

Key Approximation 3

• Only relevant atomic processes for level balance are
– electron excitation/de-excitation
– spontaneous radiative decay

• Low coronal density (108-1010 cm-3) means collisions are rare
• Typically it takes ~ 1 s to excite a level, but it decays in ~ 10-10 s
• Most ions have electrons in the lowest energy levels
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Emissivity

• The emissivity of an emission line is given as

• this is re-written as (using Fe XII as example)

• Nj/N(Fe XII) is written as nj, and ∑nj=1

jijij AN=ε

jie
e

j
ij AN

N
N

N
N

N
N

N
N )H(

)H(
)Fe(

)Fe(
)XII Fe(

XII) (Fe
=ε

F(T) Ab(Fe) 0.83
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Level Balance Equations

∑∑
≠≠

=
ij

jij
ij

iji nn αα

(leaving level i = entering level i)

• αij is the rate at which transitions i → j occur
• solar corona: α contains (i) radiative decay rates, (ii) electron excitation/de-

excitation rates

)(
)(

ji
ji

qNA
qN

ijeij
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Level Balance Equations

• To solve the level balance equations requires atomic data

• Radiative decay rates (A-values)
• Electron excitation rates (qij)

• Typical atomic models have 20-100 levels

• There are > 100 different ions relevant to corona, so a lot of atomic data 
required!
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The CHIANTI database

• The first database to make atomic physics generally available to solar 
physicists

• Collaboration between UK, US and Italy
– K. Dere, E. Landi, H. Mason, G. Del Zanna, M. Landini, P. Young

• First released in 1996, regularly updated
– currently on version 4.2

• Provides all atomic data necessary for modelling coronal spectra
• Freely available

www.chianti.rl.ac.uk
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CHIANTI data files

• CHIANTI is found within Solarsoft
– $SSW/packages/chianti

• For each ion there is a directory, e.g., dbase/fe/fe_12
• 3 main files for each ion, e.g.,

• Each is a text file, containing the atomic data for deriving level populations

fe_12.elvlc Energy levels
fe_12.wgfa Radiative decay rates
fe_12.splups Upsilons
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CHIANTI energy file

• Example: Fe XII (filename: fe_12.elvlc)

Index Configuration Level ID cm-1 Ryd

Energy

Level 1 (ground level): 3s2 3p3 4S3/2
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CHIANTI A-value file

• Radiative decay rates (A-values) are stored in “.wgfa” file: 

gf-value

A-valueWavelength
Transition
(i-j)
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CHIANTI collision file

• CHIANTI contains spline fits to the Upsilons (Maxwellian-averaged 
collision strengths) in the “.splups” files:

Transition type

gf Energy
Scaling
parameter

Ion Spline values

Transition
(i-j)
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Level Populations: Si X

• Level populations (nj) 
change with density

• Shows increasing 
importance of electron 
collisions

ground level

metastable level
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Metastable levels

• Most levels take 10-6 – 10-10 seconds to decay spontaneously
• Metastable levels typically take 0.01 – 100 seconds to decay

– determined by atomic properties of level
• Metastables can end up with significant population, affecting the 

population of all levels
– at low densities all levels are excited from the ground
– at high densities, levels can be excited from ground and metastables

• Metastables are crucial for density diagnostics
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Density Diagnostics

• Level 4 populated by weak 
transition from ground

• As density increases, metastable
gains population

• Level 4 can be excited by strong 
transition from metastable

• The ratio 4→2/3→1 is a density 
diagnostic

4

ground level

metastable level

weak
strong

3

weak

strong

2

1
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Si X Density Diagnostic

• Si X 356.0/347.4 ratio 
commonly used in analysis 
of CDS spectra
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CHIANTI Software

DENS_PLOTTER
CHIANTI IDL tool 
for studying density 
diagnostics

IDL> dens_plotter,’si_10’
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Coronal Hole Density

• Si VIII 1446 Å/1440 Å ratio 
gives electron density above 
solar limb

• Doschek et al. (1997, ApJL) 
find exponential decrease 
with height in coronal hole 
from SUMER data
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Temperature Diagnostics

• Single ions can be used to determine the 
electron temperature
– less assumptions that with other 

methods, e.g., TRACE filter ratios

• At low temperatures, colliding electrons 
have low energy and so level 3 can not be 
excited easily

• At high temperatures electrons have greater 
energy and so level 3 can be excited

• Emission line ratio 3→2/2→1 increases 
with temperature

3

2

1
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Example: O VI

• Transition 3→2 is at 173 Å (observed by CDS)
• Transition 2→1 is at 1032 Å (observed by SUMER)
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CHIANTI Software

TEMP_PLOTTER
CHIANTI IDL tool for 
studying temperature 
diagnostics

IDL> temp_plotter,’o_6’
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Coronal Hole Temperature

• David et al. (1997) used O VI 
ratio to measure temperature in 
quiet Sun and coronal hole 
regions

• Required a special roll of the 
SOHO spacecraft



Dr Peter Young, CCLRC/RALAnalysis Techniques for Turbulent Plasmas, 2004

Coronal Hole Temperature

• Fall-off of temperature in coronal hole suggests departure from equilibrium 
conditions in the low density coronal hole

David et al. 
(1997, A&A)



Dr Peter Young, CCLRC/RALAnalysis Techniques for Turbulent Plasmas, 2004

Element Abundances

• Emission lines from two different elements allow the relative element 
abundance to be derived

• Both remote sensing spectroscopy and in situ solar wind measurements 
have revealed abundance anomalies in the corona

• Ions with a low first ionization potential (FIP) are enhanced over high FIP 
elements compared to the photosphere

Von Steiger et al. (1997)
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Remote Sensing Abundances

• If two ions are formed over the same temperature range, then ratio can 
reveal abundance anomalies

• Example: Mg VI & Ne VI

Mg VI

Ne VI
)Ne(
)Mg(

VI Ne

VI Mg
obs Ab

AbQR
ε
ε

≈
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Mg/Ne Abundance Ratio

June 6, 1996
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Mg/Ne Abundance

• Mg VI and Ne VI formed at ≈ 300,000 K (transition region)

Young & Mason (1997, Sol. Phys.)
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Mg/Ne Abundance

• Brightenings in AR centre show a photospheric Mg/Ne abundance
– associated with emerging magnetic flux

• Brightenings at edge of AR show Mg/Ne enhanced by factor 10
– bases of large, stable active region loops
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UVCS Diagnostics

• UVCS observes extended corona 
(1.25 – 10 R )
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Photon Excitation

• At large heights above the Sun’s surface electron density is low (<106 cm-3)
• Electron collisions are rare, and photon excitations can compete with 

electron excitation
– photons come from the inner atmosphere

• Ion level populations (and emission line intensities) modified by radiation 
field
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Example: O VI

• A stationary O VI ion in the extended corona ‘sees’ radiation from O VI 
ions from the inner corona

O VI O VI
Sun

1032 Å photons

SOHO/UVCS

Low density (<106 cm-3)
Electron collisions weak

High density (<1010 cm-3)
Electron collisions strong
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Example: O VI

• O VI has two emission lines at 1032 Å and 1037 Å that have a ratio 2:1 in 
the inner corona

• In the low density outer corona, the inner corona radiation can excite 
transitions in the O VI ion

O VI 1032 Å
1037 Å

ground
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Example: O VI

• In the inner corona, O VI lines are collisionally-excited and have ratio 2:1

• If O VI lines are excited by photons they have ratio 4:1
– twice as many photons excite 1032 line
– 1032 line twice as likely to absorb photons
– gives factor 4
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Example: O VI

• However, if the extended corona is moving outwards at speeds ≥ 100 km/s 
it sees a redshifted spectrum from the inner corona

• The O VI lines are no longer excited by photons → return to collisional
excitation and ratio of 2:1
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Example: O VI

• Two C II lines at 1036.3 and 1037.0 Å (chromospheric)
• At velocities ≈ 150 km/s and ≈ 380 km/s these emission lines can photo-

excite the O VI 1037.6 Å in the extended corona

• Causes O VI 1032/1037 ratio to become < 2

Li et al. (1998, ApJ)
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UVCS Doppler Dimming Data

Kohl et al. (1997, 
Sol. Phys.)
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O VI Line Widths

• Further velocity information 
from line widths

• O VI lines seen by UVCS 
extremely broad

• Temperatures 200 million K!
• Highly anisotropic velocity 

distribution (v┴ » v║)
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UVCS Velocity Results
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Future Solar Missions

• Exciting times ahead for solar physics!

• STEREO, launch Feb 2006
• Solar-B, launch Aug 2006
• Solar Dynamics Observatory (SDO), launch Apr 2008
• Solar Orbiter, launch 2012-13
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STEREO

• Solar-Terrestrial Relations Observatory
• Two identical spacecraft leading and 

following the Earth
• Launch Feb 2006
• Four instrument packages

– SECCHI
– PLASTIC
– SWAVES
– IMPACT

• Goal:
– Understand the origin and consequences 

of CMEs
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STEREO Mission Phases

• Phase 1 (first 400 days; α≤50°)
– 3-D structure of the corona

• Phase 2 (days 400 to 800; 50°≤α≤110°)
– Physics of CMEs

• Phase 3 (days 800 to 1100; 110°≤α≤180°)
– Earth-directed CMEs

• Phase 4 (after day 1100; α>180°)
– Global solar evolution and space weather



Dr Peter Young, CCLRC/RALAnalysis Techniques for Turbulent Plasmas, 2004

Remote Sensing: SECCHI

• Instruments
– EUVI (EUV imager)
– COR1 & COR2 (white light coronagraphs)
– HI (heliospheric imager)

• EUVI and CORs are direct follow-ons to EIT and LASCO



Dr Peter Young, CCLRC/RALAnalysis Techniques for Turbulent Plasmas, 2004

SECCHI – EUVI

• Successor to EIT
• Image channels: Fe IX 171, Fe XII 195, Fe XIV 211, He II 304
• Larger detector (2048x2048 pixels) leads to

– Higher spatial resolution (1.6 arcsec vs. 2.5 arcsec)
– Larger field-of-view (1.7 Rsun vs. 1.4 Rsun)

• Higher telemetry ensures higher image cadence
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SECCHI – COR

• Two coronagraphs do a similar job to the three coronagraphs of LASCO
• COR1

– 1.1-3.0 Rsun; 7.5 arcsec pixels
– Measures polarization

• COR2
– 2-15 Rsun; 14 arcsec pixels
– Higher spatial resolution and time cadence than LASCO C3



Dr Peter Young, CCLRC/RALAnalysis Techniques for Turbulent Plasmas, 2004

Heliospheric Imager

• UK-led instrument (PI: Richard Harrison, RAL)
• Will obtain a new type of solar data: imaging of CMEs out to 1 a.u.
• Images not Sun-centred (unlike coronagraphs)
• Two independent telescopes (HI-1, HI-2) with half-angle fields-of-view of 

10º and 35º
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Heliospheric Imager
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Heliospheric Imager
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Solar-B

• Japan/USA/UK mission
• Follow-up to Yohkoh
• 3 scientific instruments

– X-ray imager (XRT)
– EUV spectrometer (EIS)
– Optical telescope (SOT)

• Launch 2006
• Mission aim:

– Solar-B will study the connections between fine magnetic field 
elements in the photosphere and the structure and dynamics of the 
entire solar atmosphere.

• The ‘Hubble’ of Solar Physics
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Solar Optical Telescope

• 0.5 m optical telescope feeds the Focal Plane Package (FPP)
– Telescope diffraction-limited to ~0.25 arcsec resolution
– Maximum field-of-view: 2.75x2.75 arcmin²

• Will measure vector magnetic field for the first time in space
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Solar-B XRT

• X-Ray Telescope
• Direct successor to the SXT on Yohkoh
• Key features:

– 2 arcsec resolution (1 arcsec pixels)
– Greater sensitivity to cool corona (1-2 MK)
– 34x34 arcmin² field-of-view (full solar disk)
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EUV Imaging Spectrometer

• UK-led instrument (PI: Len Culhane, MSSL)
• Spectra in 170-210Å and 250-290Å wavelength ranges
• Field-of-view 6 x 8 arcmin²
• Spatial scale: 1 arcsec pixels
• Spectral scale: 0.02Å pixels

– Line centroids ~3 km/s; line widths ~20 km/s
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Solar Dynamics Observatory

• Launch 2008
• 3 instrument packages selected by NASA:

– AIA (imaging)
– HMI (magnetograph)
– EVE (extreme ultraviolet irradiance monitoring)

• Geosynchronous orbit
– Very high telemetry rate (160 Mbits/s)
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“SOHO on Steroids”

• Telemetry rate is > 1000 times better than SOHO!
• 4 different full-disk, TRACE resolution images every 10 seconds
• 1.5 terabytes/day of data
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SDO Instruments

• AIA – Atmospheric Imaging Array
– successor to SOHO/EIT and TRACE
– 4 individual telescopes, with > 20 filters
– 4kx4k CCD images covering full disk @ 0.8 arcsec resolution

• HMI – Helioseismic and Magnetic Imager
– successor to SOHO/MDI
– full disk visible light and magnetic field imager

• EVE – Extreme ultraviolet Variability Experiment
– measures EUV irradiance spectrum from full Sun (no spatial 

resolution)
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Solar Orbiter

• ESA mission to be run jointly with Bepi-Colombo
• Launch ~2012-2013
• Will get as close as 0.2 a.u.
• Both in-situ and remote sensing instrument packages
• Remote sensing:

– Visible imager and magnetograph
– EUV imager
– EUV spectrometer
– Coronagraph
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Orbit

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

X   [AU]

Y 
  [

A
U

]

• Each orbit is around 150 
days

• Every 3rd orbit a fly-by of 
Venus gives an out of the 
ecliptic kick to the spacecraft

• Orbit reaches latitudes of 
~30° during extended 
mission (> 4 years)
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Solar Orbiter Latitude Range

• First remote sensing of the solar poles!
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End of Talk

• Remote sensing imaging and spectroscopy allow detailed information about 
the Sun’s atmosphere to be derived

• Future missions will provide even better data…
• …but must go hand-in-hand with improved atomic data and plasma 

modelling
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